Übung am 31.01.08

Forumsregeln
Wenn Du Lösungsansätze zu Beispielen suchst oder schreibst, stelle nach Möglichkeit auch die dazugehörenden Angaben zur Verfügung - am besten als Dateianhang, da die meisten Übungsangaben auf Institutshomepages nach einem Semester gelöscht werden.
So haben auch die nächsten Semester noch etwas davon ;)
Antworten
steinmetz
Beiträge: 31
Registriert: 04.10.2007, 13:08

Übung am 31.01.08

Beitrag von steinmetz »

meine ergebnisse zu 1.; Kritik natürlich erwünscht.

10 l Luft bei 10,13 bar, 25°C
Expansion auf 1,013 bar

a) isotherm (-> dT = 0 -> dU = 0)
-> deltaQ= -deltaW
pV = const = p1V1 = p2V2

-> V2 = (p1V1)/p2 = 100l

delta W = \int (p) dV = -p1V1 *(lnV2 - ln(V1)) [integral zwischen V1 und V2]
daraus: delta W = -23,32 kJ
--> delta Q = 23,32 kJ

b) adiabatisch mit k=1,4
dQ = 0
p*V^k= const

V2 = \sqrt[k]{p1*V1^k/p2} =51,79 l

delta W = -p1*V1^k* \int(1/V^k) = ... =p1*V1*((V1/V2)^(k-1) - 1)/(k-1) = -12,2 kJ
[Integral wieder zwischen V1 und V2]

Temperatur:
für adiabatisch gilt auch: T*V^(k-1) = const
also
T2 = T1*(V1/V2)^(k-1) = 154,43 K

nja, hoffe es ist lesbar und ich kann helfen.

Benutzeravatar
Almagest
Beiträge: 131
Registriert: 09.12.2007, 23:17

Beitrag von Almagest »

bähm....da war wer übers we fleißig! =)
vl kommt von mir auch noch ein beitrag; schau ma mal wie motiviert ich bin! *gg*

mfg
Ein Physiker ist jemand, der jeden technischen Defekt erklären, aber nicht reparieren kann

der mit dem integral tanz
Beiträge: 98
Registriert: 06.01.2008, 14:26

Beitrag von der mit dem integral tanz »

hey danke das du schon was gepostet hast. wäre aber cool wenn du bitte alle längeren formeln und rechnungen im TeX code schreibst, ich weis nähmlcih echt nicht was du da genau bei der berechnung der adiabatischen verichteten arbeit meinst. ich komm bis zum integral mit, aber danach weis ich nicht mehr was du genau gemacht hast, was ja eigentlich kein großes problem währe aber wenn ich auf die selbe art und weise integriere und ausrechne komm ich auf einen andere antwort als du.

auserdem bin ich mir nicht sicher ob sich die verichtete arbeit beim adiabatischen prozess wirklich so berechnen lässt, denn so wie du es gemacht hast hab ich es bis jezt noch in keinem buch gefunden.

mein versuch war bei der adiabatisch verichteten arbeit mit der harangehens weise (dem tipler entnommen):

W=\int W   dW = nC _{v} \int_{T_{1}}^{T_{2}}      dT = nC _{v} \Delta T bin damit aber bis jezt nicht auf die richtige antwort gestoßen. ich weis das wir am blatt die spezifische wärmekapazität per kg gegeben haben, habe die anzahl der mol der luft auch schon umgerechnet in kg aber das bringt auch nichts

Benutzeravatar
laugenstangerl
Beiträge: 45
Registriert: 29.01.2008, 19:04

Beitrag von laugenstangerl »

2.)
f = anzahl der freiheitsgrade der atome
R = allg. gaskonstante 8,31 J/(mol * K)

p2 = 4 * p1
V2 = 0.5 * V1

wir haben ein ideales gas, also gilt:

I. p1 * V1 = R * T1
II. p2 * V2 = R * T2

durch einsetzen der obigen werte u subtrahieren der beiden gleichungen kommt man auf

T1 - T2 = deltaT = (p1 * V1)/R
-----------------------------------------------

U1 = 0.5 * f * R * T1
U2 = 0.5 * f * R * T2

durch subtrahieren kommt man auf

deltaU = 0.5 * R * deltaT

nachdem wir uns deltaT schon oben ausgedrückt haben, kommen wir auf die gleichung:

deltaU = 0.5 * f * p1 * V1

------------------------------------------------

kappa ist ja als Cp/Cv definiert, mit einsetzen kommt man auch auf (f+2)/f.

k = 5/3
=> f = 3

werte in die gleichung einsetzen u fertig, analog für b (f=5).


ich denke, es ist halbwegs verständlich - ist ja auch nicht ganz so schwer.

Benutzeravatar
rastaman
Beiträge: 64
Registriert: 16.10.2007, 19:46
Kontaktdaten:

Meine Ergebnisse zu BSP 1

Beitrag von rastaman »

Hallo

Hier mal meine Rechnung zum BSP 1.

Bsp 3 und 4 wären jetzt noch interessant.

Grüße
Du hast keine ausreichende Berechtigung, um die Dateianhänge dieses Beitrags anzusehen.

tic_00
Beiträge: 15
Registriert: 05.12.2007, 21:09

Beitrag von tic_00 »

wie kommt man auf den zusammenhang zwischen k und freiheitsgrad f?

Benutzeravatar
DanielHa
Beiträge: 106
Registriert: 10.12.2007, 16:38

Beitrag von DanielHa »

folie 40 im pdf. Aber da steht auch nur der Zusammenhang, von wo es kommt, steht nicht. (Kapitel_10b_05.pdf)

tic_00
Beiträge: 15
Registriert: 05.12.2007, 21:09

Beitrag von tic_00 »

na gut... danke...

Malahidael
Beiträge: 67
Registriert: 05.10.2007, 14:49

Beitrag von Malahidael »

Oder man weiß, dass \kappa =  C_{p}/C_{v} und C_{p}=C_{v}+R, man sich somit C_{v} ausdrücken kann und man sich so dU ermitteln kann mit dem was man weiß ;). Ist so finde ich verständlicher. \Delta T erhält man so wie vom Kollegen beschrieben und setzt die gewonnenen Erkenntnisse in dU=C_{v}\Delta T ein, sodass man auf dU= \frac{P_{1}V_{1}}{\kappa -1} kommt.

Bsp. 4 ist im Hinweis genau beschrieben, wie man es lösen soll. Beide Kurven, (Dampfdruck und Schmelzkurve sind gemeint) sind als Gerade zu approximieren und dann schneiden. Man muss halt aus den gegebenen Informationen sich seine Geraden aufstellen und das wars eigentlich schon (sry, für genaue Ausführungen ist es mir jetzt etwas zu spät ;)).

Bsp. 3 ist im Prinzip nicht schwer, man muss nur differenzieren und integrieren und der Rest ergibt sich von alleine.

Ansatz: G=U+pV-TS ableiten und anschließend integrieren. V muss man sich über die Gasgleichung ausdrücken und anschließend umformen ( nicht vergessen:\Delta G = 15kJ). Gesucht ist n (Stoffmenge), da wir die Masse gegeben haben, wollen wir wissen, wieviele mol des Gases vorhanden sind, um uns die Molare Masse des Gases ausrechnen zu können (Es ist CH_{4}).

Für Punkt b F=U-TS ansetzen und selbes Spielchen wie immer, ableiten, integrieren und das wars auch schon ;).

Punkt c ergibt sich aus Punkt b und aus dem 1 HS. der Thermodynamik.

Und nie vergessen bei dem BSP dT=0, da isotherm.

Ich hoffe das hilft noch dem Einen oder Anderen einen Ansatz zu haben :).

Malahidael
Beiträge: 67
Registriert: 05.10.2007, 14:49

Beitrag von Malahidael »

Oder man weiß, dass \kappa =  C_{p}/C_{v} und C_{p}=C_{v}+R, man sich somit C_{v} ausdrücken kann und man sich so dU ermitteln kann mit dem was man weiß ;). Ist so finde ich verständlicher. \Delta T erhält man so wie vom Kollegen beschrieben und setzt die gewonnenen Erkenntnisse in dU=C_{v}\Delta T ein, sodass man auf dU= \frac{P_{1}V_{1}}{\kappa -1} kommt.

Bsp. 4 ist im Hinweis genau beschrieben, wie man es lösen soll. Beide Kurven, (Dampfdruck und Schmelzkurve sind gemeint) sind als Gerade zu approximieren und dann schneiden. Man muss halt aus den gegebenen Informationen sich seine Geraden aufstellen und das wars eigentlich schon (sry, für genaue Ausführungen ist es mir jetzt etwas zu spät ;)).

Bsp. 3 ist im Prinzip nicht schwer, man muss nur differenzieren und integrieren und der Rest ergibt sich von alleine.

Ansatz: G=U+pV-TS ableiten und anschließend integrieren. V muss man sich über die Gasgleichung ausdrücken und anschließend umformen ( nicht vergessen:\Delta G = 15kJ). Gesucht ist n (Stoffmenge), da wir die Masse gegeben haben, wollen wir wissen, wieviele mol des Gases vorhanden sind, um uns die Molare Masse des Gases ausrechnen zu können (Es ist CH_{4}).

Für Punkt b F=U-TS ansetzen und selbes Spielchen wie immer, ableiten, integrieren und das wars auch schon ;).

Punkt c ergibt sich aus Punkt b und aus dem 1 HS. der Thermodynamik.

Und nie vergessen bei dem BSP dT=0, da isotherm.

Ich hoffe das hilft noch dem Einen oder Anderen einen Ansatz zu finden :).

Benutzeravatar
laugenstangerl
Beiträge: 45
Registriert: 29.01.2008, 19:04

Beitrag von laugenstangerl »

tic_00 hat geschrieben:wie kommt man auf den zusammenhang zwischen k und freiheitsgrad f?
siehe demtröder S288 - auch wenn's vermutlich schon zu spät ist.

Antworten

Zurück zu „Grundlagen der Physik I“